Descent sets for oscillating tableaux
نویسندگان
چکیده
The descent set of an oscillating (or up-down) tableau is introduced. This descent set plays the same role in the representation theory of the symplectic groups as the descent set of a standard tableau plays in the representation theory of the general linear groups. In particular, we show that the descent set is preserved by Sundaram’s correspondence. This gives a direct combinatorial interpretation of the branching rules for the defining representations of the symplectic groups; equivalently, for the Frobenius character of the action of a symmetric group on an isotypic subspace in a tensor power of the defining representation of a symplectic group. Résumé. Dans cet article, nous définissons la notion d’ensemble de descentes pour un tableau oscillant. Ces descentes sont analogues aux descentes d’un tableau standard dans la théorie des représentations des groupes généraux linéaires. Nous montrons que la correspondance de Sundaram préserve cet ensemble et nous donnons une interprétation combinatoire directe des règles de branchement pour la représentation des groupes symplectiques. Enfin, nous décrivons combinatoirement les caractères de Frobenius associés à l’action du groupe symétrique sur les composantes isotypiques du produit tensoriel des représentations d’un groupe symplectique.
منابع مشابه
Descent Sets for Symplectic Groups
The descent set of an oscillating (or up-down) tableau is introduced. This descent set plays the same role in the representation theory of the symplectic groups as the descent set of a standard tableau plays in the representation theory of the general linear groups. In particular, we show that the descent set is preserved by Sundaram's correspondence. This gives a direct combinatorial interpret...
متن کاملProperties of the Robinson-schensted Correspondence for Oscillating and Skew Oscillating Tableaux
In this paper, we consider the Robinson-Schensted correspondence for oscillating tab-leaux and skew oscillating tableaux deened in 15] and 3]. First we give an analogue, for the oscillating tableaux, of the classical geometric construction of Viennot for standard tableaux ((16]). Then, we extend a construction of Sagan and Stanley ((10]), dealing with standard tableaux and skew tableaux, to ded...
متن کاملA Note on Statistical Averages for Oscillating Tableaux
Oscillating tableaux are certain walks in Young’s lattice of partitions; they generalize standard Young tableaux. The shape of an oscillating tableau is the last partition it visits and the length of an oscillating tableau is the number of steps it takes. We define a new statistic for oscillating tableaux that we call weight: the weight of an oscillating tableau is the sum of the sizes of all t...
متن کاملMultiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
In this paper we classify all Schur functions and skew Schur functions that are multiplicity free when expanded in the basis of fundamental quasisymmetric functions, termed F -multiplicity free. Combinatorially, this is equivalent to classifying all skew shapes whose standard Young tableaux have distinct descent sets. We then generalize our setting, and classify all F -multiplicity free quasisy...
متن کاملAnnals of Combinatorics Multiplicity Free Schur , Skew Schur , and Quasisymmetric Schur Functions ∗
In this paper we classify all Schur functions and skew Schur functions that are multiplicity free when expanded in the basis of fundamental quasisymmetric functions, termed F-multiplicity free. Combinatorially, this is equivalent to classifying all skew shapes whose standard Young tableaux have distinct descent sets. We then generalize our setting, and classify all F-multiplicity free quasisymm...
متن کامل